Chem 101B Study Questions

Name:

Chapters 14,15,16 Review Tuesday 3/26/2019 Due on Exam Thursday 3/28/2019 (Exam 3 Date) This is a homework assignment. Please show your work for full credit. If you do work on separate paper, attach the work to these.

Exam 2 Sections Covered:

14.6, 14.8, 14.9, 14.10, 14.11, 14.12 15.1 – 15.5 16.1

Useful Info to be provided on exam:

In questions 1-7, determine the acidity of an aqueous solution made from each of the following salts:

- 1. solid calcium hydroxide, Ca(OH)2
 - A) acidic
 - B) basic
 - C) neutral
 - D) cannot tell
 - E) none of these (A-D)
- 2. solid sodium nitrate, NaNO3
 - A) acidic
 - B) basic
 - C) neutral
 - D) cannot tell
 - E) none of these (A-D)
- 3. solid ammonium bromide, NH4Br
 - A) acidic
 - B) basic
 - C) neutral
 - D) cannot tell
 - E) none of these (A-D)
- 4. solid aluminum chloride, AlCl₃
 - A) acidic
 - B) basic
 - C) neutral
 - D) cannot tell
 - E) none of these (A-D)
- 5. solid sodium hydrogen carbonate NaHCO₃ (K_a HCO₃ = 4.7 × 10⁻¹¹, Kb HCO₃ = 2.2 × 10⁻⁸)
 - A) acidic
 - B) basic
 - C) neutral
 - D) cannot tell
 - E) none of these (A-D)

- 6. solid sodium carbonate, Na₂CO₃
 - A) acidic
 - B) basic
 - C) neutral
 - D) cannot tell
 - E) none of these (A-D)
- 7. solid ammonium acetate (NH₄C₂H₃O₂). For NH₄⁺, $K_a = 5.6 \times 10^{-10}$; for C₂H₃O₂⁻, $K_b = 5.6 \times 10^{-10}$.
 - A) acidic
 - B) basic
 - C) neutral
 - D) cannot tell
 - E) none of these (A-D)
- 8. Calculate the pH of a 1.0 *M* sodium acetate solution. (HC₂H₃O₂ $K_a = 1.8 \times 10^{-5}$)
 - A) 7.0
 - B) 9.37
 - C) 5.46
 - D) 8.54
 - E) none of these (A-D)

9. Calculate the pH of the following aqueous solution:

0.69 *M* NH₄Cl (K_b for NH₃ = 1.8×10⁻⁵)

- A) 9.29
- B) 4.71
- C) 9.42
- D) 4.58
- E) none of these
- 10. What is the pH of a 0.44 *M* KCl solution?
 - A) 0.36
 - B) 7.00
 - C) 13.64
 - D) 2.20
 - E) 9.20

- 11. Which is the strongest acid of the following (hint: consider the structures)?
 - A) HClO₂
 - B) HClO
 - C) HBrO
 - D) HIO
 - E) HOAt
- 12. Which of the following species <u>cannot</u> act as a Lewis base?
 - A) N³⁻
 - B) NH²⁻
 - C) NH2⁻
 - D) NH₃
 - E) NH_4^+
- 13. Which of the following species <u>cannot</u> act as a Lewis acid?
 - A) CH4
 - B) H⁺
 - C) BF3
 - D) BeCl₂
 - E) Ag^+

14. Explain why 0.1 *M* NaCN is basic while 0.1 *M* NaNO₃ is neutral.

Use the following to answer questions 15-17:

Determine whether the following oxides produce an acidic, basic, or neutral solution when dissolved in water:

15. K₂O

16. Cl₂O

17. SO₂

- 18. What is the percent dissociation of HNO₂ when 0.057 g of sodium nitrite is added to 115.0 mL of a 0.064 *M* HNO₂ solution? K_a for HNO₂ is 4.0×10^{-4} .
 - A) 14%
 - B) 0.36%
 - C) 4.0%
 - D) 0.081%
 - E) 7.9%
- 19. Which of the following <u>will not</u> produce a buffered solution? *hint: Do the (before/after) stoichiometry first*
 - A) 100 mL of 0.1 *M* Na₂CO₃ and 50 mL of 0.1 *M* HCl
 - B) 100 mL of 0.1 *M* NaHCO₃ and 25 mL of 0.2 *M* HCl
 - C) 100 mL of $0.1 M H_2 CO_3$ and 25 mL of 0.2 M NaOH
 - D) 50 mL of 0.2 *M* Na₃PO₄ and 5 mL of 1.0 *M* HCl
 - E) 100 mL of 0.1 M Na₂CO₃ and 50 mL of 0.1 M NaOH
- 20. Suppose a buffer solution is made from formic and (HCHO₂) and sodium formate (NaCHO₂). What is the **net ionic** equation for the reaction that occurs when a small amount of hydrochloric acid is added to the buffer?
 - A) $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$
 - B) $H^+(aq) + HCHO_2(aq) \rightarrow H_2O(l) + H_2CHO_2^+(aq)$
 - C) $HCl(aq)+OH^{-}(aq) \rightarrow H_2O(l)+Cl^{-}(aq)$
 - D) $HCl(aq) + CHO_2^{-}(aq) \rightarrow HCHO_2(aq) + Cl^{-}(aq)$
 - E) $H^+(aq) + CHO_2^-(aq) \rightarrow HCHO_2(aq)$
- 21. A 100. mL sample of 0.10 *M* HCl is mixed with 50. mL of 0.14 *M* NH₃. What is the resulting pH? (K_b for NH₃ = 1.8 ×10⁻⁵)
 - A) 3.04
 - B) 10.96
 - C) 12.30
 - D) 1.52
 - E) 1.70
- 22. The following question refers to a **2.0-liter** buffered solution created from 0.38 *M* NH₃ ($K_b = 1.8 \times 10^{-5}$) and 0.26 *M* NH₄Cl. When 0.10 mol of H⁺ ions is added to the solution what is the pH?
 - A) 4.72
 - B) 4.77
 - C) 10.43
 - D) 9.28
 - E) 7.98

- 23. You have a 250.-mL sample of 1.93 *M* acetic acid ($K_a = 1.8 \times 10^{-5}$). Calculate the pH of the **best buffer** using this weak acid..
 - A) 7.00
 - B) 4.74
 - C) 4.42
 - D) 9.26
 - E) none of these
- 24. A solution contains 0.250 *M* HA ($K_a = 1.0 \times 10^{-6}$) and 0.45 *M* NaA (buffer). What is the pH after 0.24 mole of HCl is added to 1.00 L of this solution?
 - A) 0.62
 - B) 7.63
 - C) 5.63
 - D) 2.04
 - E) 8.37
- 25. The following question refers to the following system: A 1.0-liter solution contains 0.25 M HF and 0.36 M NaF (K_a for HF is 7.2 \times 10⁻⁴). If one adds 0.30 liters of 0.020 M KOH to the solution, what will be the change in pH?

hint: this is kind of like a titration!

- A) 0.02
- B) 3.32
- C) 0.18
- D) -0.11
- E) -0.27
- 26. How many moles of solid NaF would have to be added to 1.0 L of 2.48 *M* HF solution to achieve a buffer of pH 3.35? Assume there is no volume change. (K_a for HF = 7.2 × 10⁻⁴)
 - A) 4.0
 - B) 0.51
 - C) 0.65
 - D) 1.0
 - E) 1.6

- 27. A solution contains 0.500 *M* HA ($K_a = 1.0 \times 10^{-8}$) and 0.482 *M* NaA. What is the [H⁺] after 0.10 mole of HCl is added to 1.00 L of this solution?
 - A) $1.0 \times 10^{-8} M$
 - B) $2.6 \times 10^{-8} M$
 - C) $6.4 \times 10^{21} M$
 - D) $1.6 \times 10^{-8} M$
 - E) none of these
- 28. Which of the following solutions will be the best buffer for a pH of 9.26? (K_a for HC₂H₃O₂ is 1.8×10^{-5} , K_b for NH₃ is 1.8×10^{-5}).
 - A) $0.10 M HC_2H_3O_2$ and $0.10 M Na C_2H_3O_2$
 - B) $5.0 M HC_2H_3O_2$ and $5.0 M Na C_2H_3O_2$
 - C) 0.10 *M* NH₃ and 0.10 *M* NH₄Cl
 - D) 5.0 *M* NH₃ and 5.0 *M* NH₄Cl
 - E) 5.0 *M* HC₂H₃O₂ and 5.0 *M* NH₃

Use the following to answer questions 29-30:

You have two buffered solutions. Buffered solution 1 consists of $5.0 M \text{HC}_2\text{H}_3\text{O}_2$ and $5.0 M \text{Na}_2\text{H}_3\text{O}_2$; Buffered solution 2 is made of $0.050 M \text{HC}_2\text{H}_3\text{O}_2$ and $0.050 M \text{Na}_2\text{H}_3\text{O}_2$.

- 29. How does the pH of each buffered solution compare?
 - A) The pH of buffered solution 1 is greater than that of buffered solution 2.
 - B) The pH of buffered solution 2 is greater than that of buffered solution 1.
 - C) The pHs are the same.
 - D) Cannot be determined without the K_a values.
 - E) None of these (A-D).
- 30. Which solution has the greater buffering capacity?
 - A) Solution 1
 - B) Solution 2
 - C) Both solutions have the same buffering capacity.

- 31. A 50.00-mL sample of 0.100 *M* KOH is titrated with 0.293 *M* HNO₃. Calculate the pH of the solution after 52.00 mL of HNO₃ is added.
 - A) 13.00
 - B) 0.83
 - C) 1.00
 - D) 13.17
 - E) none of these
- 32. Consider the titration of 300.0 mL of 0.700 *M* NH₃ ($K_b = 1.8 \times 10^{-5}$) with 0.550 *M* HNO₃. How many milliliters of 0.550 *M* HNO₃ are required to reach the equivalence point of the reaction?
 - A) $4.32 \times 10^2 \text{ mL}$
 - B) 4.82×10^2 mL
 - C) 7.00×10^2 mL
 - D) $3.82 \times 10^2 \,\text{mL}$
 - E) none of these
- 33. A 50.0-mL sample of 0.10 *M* HNO₂ ($K_a = 4.0 \times \Box 10^{-4}$) is titrated with 0.13 M NaOH. The pH after 25.0 mL of NaOH have been added is
 - A) 10.33
 - B) 7.00
 - C) 6.67
 - D) 3.67
 - E) none of these
- 34. The pH at the equivalence point of a titration of a weak acid with a strong base will be 1 7.00
 - A) less than 7.00
 - B) equal to 7.00
 - C) greater than 7.00
 - D) equal to the pK_a of the acid
 - E) more data needed to answer this question
- 35. A 75.0-mL sample of 0.0500 *M* HCN ($K_a = 6.2 \times 10^{-10}$) is titrated with 0.348 *M* NaOH. What is the [H⁺] in the solution after 3.0 mL of 0.348 *M* NaOH have been added?
 - A) $6.2 \times 10^{-6} M$
 - B) $1.0 \times 10^{-7} M$
 - C) 2.6 M
 - D) $1.6 \times 10^{-9} M$
 - E) none of these

- 36. You have 75.0 mL of 0.12 *M* HA. After adding 30.0 mL of 0.10 *M* NaOH, the pH is 5.50. What is the K_a value of HA? *hint: use buffer equation*
 - A) 3.2×10^{-6}
 - B) 1.6×10^{-6}
 - C) 0.50
 - D) 1.1×10^{-6}
 - E) none of these
- 37. You have 100.0 mL of 0.100 *M* aqueous solutions of each of the following acids: HCN, HF, HCl, and HC₂H₃O₂. You titrate each with 0.100 *M* NaOH (*aq*). Rank the pHs of each of the solutions at the equivalence point, from highest to lowest pH.
 - $K_{\rm a}$ for HCN = 6.2×10^{-10} $K_{\rm a}$ for HF = 7.2×10^{-4} $K_{\rm a}$ for HC₂H₃O₂ = 1.8×10^{-5}
 - A) HCN, HC₂H₃O₂, HF, HCl
 - B) HCl, HF, HCN, HC₂H₃O₂
 - C) HF, HCN, $HC_2H_3O_2$, HC1
 - D) HC₂H₃O₂, HCl, HCN, HF
 - E) none of these

38. Consider the following indicators and their pH ranges:

Methyl orange	3.2-4.4
Methyl red	4.8-6.0
Bromothymol blue	6.0-7.6
Phenolphthalein	8.2-10.0
Alizarin yellow	10.1-12.0

For which of the following titrations would methyl red be a good indicator?

- A) $0.100 M HNO_3 + 0.100 M KOH$
- B) 0.100 *M* aniline $(K_b = 3.8 \times 10^{-10}) + 0.100 M$ HCl
- C) $0.100 M \text{ NH}_3 (K_b = 1.8 \times 10^{-5}) + 0.100 M \text{ HCl}$
- D) 0.100 *M* HF ($K_a = 7.2 \times 10^{-4}$) + 0.100 *M* NaOH
- E) 0.100 *M* acetic acid ($K_a = 1.8 \times 10^{-5}$) + 0.100 *M* NaOH

- 39. A certain indicator HIn has a p*K*_a of 9.00 and a color change becomes visible when 7.00% of it is In⁻. At what pH is this color change visible? *hint: try the Hendersson formula*!
 - A) 10.2
 - B) 3.85
 - C) 6.15
 - D) 7.88
 - E) none of these
- 40. The solubility of CaSO₄ in pure water at 0° C is 1.17 gram(s) per liter. Calculate K_{sp} .
 - A) 8.59×10^{-3}
 - B) 1.17×10^{-3}
 - C) 9.27×10^{-2}
 - D) 7.38×10^{-5}
 - E) none of these
- 41. The solubility in mol/L of Ag₂CrO₄ is 1.4×10^{-4} *M*. Calculate the K_{sp} for this compound.
 - A) 3.9×10^{-8}
 - B) 1.4×10^{-4}
 - C) 1.1×10^{-11}
 - D) 2.7×10^{-12}
 - E) 2.8×10^{-4}
- 42. The solubility of silver phosphate, Ag₃PO₄, at 25°C is 1.64×10^{-5} mol/L. What is the K_{sp} for the silver phosphate at 25°C?
 - A) 1.19×10^{-13}
 - B) 1.95×10^{-18}
 - C) 8.07×10^{-10}
 - D) 7.23×10^{-20}
 - E) none of these
- 43. Find the solubility (in mol/L) of lead(II) chloride, PbCl₂, at 25°C. $K_{sp} = 1.58 \times 10^{-5}$.
 - A) 1.58×10^{-2}
 - B) 2.51×10^{-2}
 - C) 6.16×10^{-17}
 - D) 1.99×10^{-3}
 - E) 1.99×10^{-2}

- 44. Calculate the concentration of the silver ion in a saturated solution of silver chloride, AgCl ($K_{sp} = 1.62 \times 10^{-10}$).
 - A) 1.62×10^{-10}
 - B) 1.27×10^{-5}
 - C) 2.62×10^{-20}
 - D) 3.24×10^{-10}
 - E) none of these
- 45. The molar solubility of BaCO₃ ($K_{sp} = 1.6 \times 10^{-9}$) in 0.10 M BaCl₂ solution is:
 - A) 1.6×10^{-10}
 - B) 4.0×10^{-5}
 - C) 7.4×10^{-4}
 - D) 0.10
 - E) none of these
- 46. The solubility of Mg(OH)₂ ($K_{sp} = 8.9 \times 10^{-12}$) in 1.0 L of a solution buffered (with large capacity) at pH 9.47 is:
 - A) 7.8×10^7 moles
 - B) 1.0×10^{-2} moles
 - C) 3.0×10^{-7} moles
 - D) 3.0×10^{-5} moles
 - E) none of these
- 47. The solubility in mol/L of M(OH)₂ in 0.030 *M* KOH is 1.0×10^{-5} mol/L. What is the K_{sp} for M(OH)₂?
 - A) 9.0×10^{-9}
 - B) 3.0×10^{-7}
 - C) 9.0×10^{-4}
 - D) 4.0×10^{-15}
 - E) 1.7×10^{-6}
- 48. Which of the following solid salts is more soluble in 1.0 M H^+ than in pure water?
 - A) NaCl
 - B) CaCO₃
 - C) KCl
 - D) AgCl
 - E) KNO3

- 49. Without performing calculations, which of the following is the most soluble?
 - Salt K_{sp} Pb(OH)2 1.4×10^{-20} Mn(OH)2 2.0×10^{-13} Zn(OH)2 2.1×10^{-16} A)Pb(OH)2B)Mn(OH)2C)Zn(OH)2D)All have the same solubility.

Answer Key

1.	В
	Chapter/Section: 14.8
2.	С
	Chapter/Section: 14.8
3.	A
	Chapter/Section: 14.8
4.	A
	Chapter/Section: 14.8
5.	В
	Chapter/Section: 14.8
6.	В
	Chapter/Section: 14.8
7.	C
	Chapter/Section: 14.8
8.	В
	Chapter/Section: 14.8
9.	B
	Chapter/Section: 14.8
10.	В
	Chapter/Section: 14.8
11.	A
	Chapter/Section: 14.9
12.	E
	Chapter/Section: 14.11
13.	A
	Chapter/Section: 14.11
14.	When NaCN dissolves in water, it produces Na ⁺ and CN ⁻ ions. The Na ⁺ ion is the
	cation of a strong base, and so does not have any effect on the $[H^+]$ or $[OH^-]$ in water.
	The CN ⁻ ion, however, is the anion of a weak acid. It will react with water to produce
	OH ⁻ and the conjugate acid, HCN. Since [OH ⁻] increases by this reaction, the solution
	is basic.
	When NaNO ₃ dissolves in water, the solvated ions are Na ⁺ and NO ₃ ⁻ . Again, Na ⁺ does
	not affect $[H^+]$ or $[OH^-]$. Neither does NO ₃ ⁻ since it is the anion of a strong acid, and so
	It does not act as a base, and does not affect $[H^+]$ or $[OH^-]$.
	See Sec. 14.8 of Zumdahl <i>Chemistry</i>
	Chapter/Section: 14.8
15	basic
15.	
	$K_2O(s) + H_2O(l) \rightarrow 2KOH(aq)$; see Sec 14.10. Zumdahl Chemistry.
	Chapter/Section: 14.10

	16.	acidic
		$C_{12}O(a) + H_{2}O(b) \rightarrow 2HC_{1}O(aa);$ see Sec 14.10. Zumdahl <i>Chamistry</i>
-		Chapter/Section: 14 10
	17.	acidic
	17.	
		$SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq)$; see Sec 14.10, Zumdahl Chemistry.
		Chapter/Section: 14.10
	18.	C
_		Chapter/Section: 15.1
	19.	E
_		Chapter/Section: 15.2
	20.	E
_		Chapter/Section: 15.2
	21.	E
-	~ ~ ~	Chapter/Section: 15.2
	22.	
	22	Chapter/Section: 15.2
	23.	B
	24	Chapter/Section: 15.2
	24.	Chanten/Section: 15.2
	25	
	23.	A Chapter/Section: 15.2
	26	
-	20.	Chapter/Section: 15.2
	27.	D
7		Chapter/Section: 15.2
	28.	D
		Chapter/Section: 15.3
	29.	С
		Chapter/Section: 15.3
	30.	Α
_		Chapter/Section: 15.3
	31.	C
_		Chapter/Section: 15.4
	32.	D
_		Chapter/Section: 15.4
	33.	
	2.1	Chapter/Section: 15.4
	34.	
	25	Chapter/Section: 15.4
	35.	
	26	Chapter/Section: 15.4
	36.	B Classica / Castiener 15.4
		Unapter/Section: 15.4

37.	Α
	Chapter/Section: 15.4
38.	A, C
	Chapter/Section: 15.5
39.	D
	Chapter/Section: 15.5
40.	D
	Chapter/Section: 16.1
41.	С
	Chapter/Section: 16.1
42.	В
	Chapter/Section: 16.1
43.	Α
	Chapter/Section: 16.1
44.	В
	Chapter/Section: 16.1
45.	E
	Chapter/Section: 16.1
46.	В
	Chapter/Section: 16.1
47.	Α
	Chapter/Section: 16.1
48.	В
	Chapter/Section: 16.1
49.	В
	Chapter/Section: 16.2