CHEM 101B Kinetics – Initial Rates Method for determining Rate Law

29. The reaction

$$2NO(g) + Cl_2(g) \longrightarrow 2NOCl(g)$$

was studied at -10°C. The following results were obtained where

Rate =
$$-\frac{\Delta |\text{Cl}_2|}{\Delta t}$$

	[NO] ₀ (mol/L)	[Cl ₂] ₀ (mol/L)	Initial Rate (mol/L · min)	Tola T
1) 2)	0.10 0.10 0.20 1 × 2	0.10 ×2 0.20 ×2 0.20	0.18 0.36 1.45 2×4	1st order in [Cla] 2nd order in EN
WI	nat is the rate la	w?		rate = k[No] [a2]

- a.
- b. What is the value of the rate constant?

explicit
$$\frac{[ca_2]}{[a_2]}$$
 $\frac{[ca_2]}{[a_2]}$ $\frac{rate}{[a_2]}$ $\frac{[a_2]}{[a_2]}$ $\frac{[a_2]}{[a_2]}$

$$\frac{\exp^{\frac{1}{2}}}{\exp^{\frac{3}{2}}} = \frac{18}{1.45}$$
 $\frac{10}{20}$ = $\frac{18}{1.45}$ $\frac{109}{109}$ $\frac{(.124)}{109}$ = $\frac{1}{109}$

Page 1 / 4

$$\frac{.36}{(.10)^2(.20)} = |80$$

$$\frac{1.45}{(.20)^2(.20)} = 181$$

$$k = \frac{\text{rate}}{[\text{No}]^2[\text{Ce}_2]} = \frac{\frac{1}{\text{mon}}}{\frac{1}{\text{L}^2}(\frac{\text{mon}}{\text{L}^2})} = \frac{L^2}{\text{mol}^2 \text{mol}^2}$$

$$= \frac{M}{\min} = \frac{1}{\min} = \frac{1}{M^2 \cdot M^2}$$

$$= \frac{1}{M^2 \cdot M} = \frac{1}{M^2} = \frac{1}{M^2 \cdot M^2}$$

30. The reaction

$$2I^{-}(aq) + S_2O_8^{2-}(aq) \longrightarrow I_2(aq) + 2SO_4^{2-}(aq)$$

was studied at 25°C. The following results were obtained where

$$Rate = -\frac{\Delta[S_2O_8^{2-}]}{\Delta t}$$

0.040	12.5×10
0.040	6.25×10^{-1}
0.020	6.25×10^{-1}
0.040	$5.00 \times 10^{-}$
0.030	7.00×10^{-1}
	0.020 0.040

a. Determine the rate law. rate = KCI-1[5208-1

b. Calculate a value for the rate constant for each experiment and an average value for the rate constant.

 $\frac{1}{2} \left[\frac{1}{2} \right]^{2} = \frac{12.5 \times 10^{2}}{6.25 \times 10^{2}}$ $\frac{1}{2} \left[\frac{520^{2}}{620} \right]^{2} = \frac{12.5 \times 10^{2}}{6.25 \times 10^{2}}$ iment $\frac{1}{2} \left[\frac{520^{2}}{620} \right]^{2} = \frac{12.5 \times 10^{2}}{6.25 \times 10^{2}}$ $\frac{1}{2} \left[\frac{520^{2}}{620} \right]^{2} = \frac{12.5 \times 10^{2}}{6.25 \times 10^{2}}$ $\frac{1}{2} \left[\frac{520^{2}}{620} \right]^{2} = \frac{12.5 \times 10^{2}}{6.25 \times 10^{2}}$

34. The reaction

$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$

was studied, and the following data were obtained where

Rate =
$$-\frac{\Delta[O_2]}{\Delta t}$$

(1	[NO]₀ molecules/cm³)	[O ₂] ₀ (molecules/cm³)	Initial Rate (molecules/cm³ · s)
n	1.00×10^{13}	$1.00 imes 10^{12}$	2.00×10^{16}
2)	3.00×10^{18}	$1.00 imes10^{13}$	1.80×10^{17}
3)	2.50×10^{13}	2.50×10^{13}	3.13×10^{17}

What would be the initial rate for an experiment where $[NO]_0 = 6.21 \times 10^{18}$ molecules/cm³ and $[O_2]_0 = 7.36 \times 10^{18}$ molecules/cm³?

$$\frac{\text{eyo}_{3}}{\text{exp}_{1}} \left(\frac{3.00 \times 10^{18}}{1.00 \times 10^{18}} \right)^{N} = \frac{1.80 \times 10^{17}}{2.20 \times 10^{16}}$$

$$\frac{3.60}{1.00 \times 10^{18}} \right)^{N} = \frac{1.80 \times 10^{17}}{2.20 \times 10^{16}}$$

$$\frac{109}{109} = N$$

$$\frac{109}{109} = N$$

$$\frac{109}{109} = N$$

$$\frac{109}{109} = N$$

$$\frac{109}{1.80 \times 10^{17}} = N$$

$$\frac{2.50 \times 10^{18}}{3.00 \times 10^{19}} \left(\frac{2.50 \times 10^{18}}{1.00 \times 10^{18}} \right)^{N} = \frac{3.13 \times 10^{17}}{1.80 \times 10^{17}}$$

$$\frac{1}{100} = \frac{1.74}{100} = \frac{1$$

35. The rate of the reaction between hemoglobin (Hb) and carbon monoxide (CO) was studied at 20°C. The following data were collected with all concentration units in μmol/L. (A hemoglobin concentration of 2.21 μmol/L is equal to 2.21 × 10⁻⁶ mol/L.)

[Hb] ₀ (µmol/L)	[CO] ₀ (µmol/L)	Initial Rate (µmol/L·s)
2.21	1.00	0.619
4.42	1.00	1.24
4.42	3.00	3.71

a. Determine the orders of this reaction with respect to Hb and CO.

b. Determine the rate law. rate=k[Hb]o[co]

- c. Calculate the value of the rate constant.
- **d.** What would be the initial rate for an experiment with [Hb]₀ = 3.36 μ mol/L and [CO]₀ = 2.40 μ mol/L?

rate = .280 (3.36)(2.40) = 2.26 \(\mu\text{mol}\)/L.S 280 280