Chem 101B Exam 3 Concepts

Chapter 14 – Acids and Bases

- ✓ Identify whether an aqueous solution of a salt will be acidic, basic or neutral.
- ✓ Calculate pH, pOH for a salt (Use $K_aK_b = K_w$ to calculate the conjugate ionization constant)
- ✓ Identify Lewis acid or Lewis base.
- ✓ Metallic oxides = basic, nonmetallic oxides = acidic

Chapter 15 - Acid-Base Equilibria

- ✓ Calculate [H⁺], [OH⁻], pH, pOH, %diss of a weak acid + conjugate base (buffer).
- \checkmark Calculate Δ pH when either strong acid or strong base is added to buffer
 - ⇒ either by adding moles H⁺ or OH⁻ directly, or
 - ⇒ adding a solution containing H⁺ or OH⁻
- ✓ Know how a buffer works in that (HA or A⁻) reacts directly with (OH⁻ or H⁺) respectively
- ✓ Buffer Capacity
 - ⇒ [HA]/[A⁻] ~ 1
 - ⇒ [HA] & [A⁻] large
- ✓ pH Titrations (SA/SB, WA/SB, or SA/WB)
 - ⇒ General shape of the curve pH vs volume titrant
 - ⇒ Estimate pH at equivalence point
 - - ⇒ pH before titrant added
 - ⇒ pH before equivalence point
 - ⇒ pH at equivalence point
 - ⇒ pH after equivalence point
- ✓ Acid-Base Indicators choosing indicator to detect equivalence point

Chapter 16 - Solubility Equilibria

- \checkmark Calculate K_{sp} given solubility
- ✓ Compare solubility of salts given K_{sp}
- ✓ Calculate solubility (mol/L or g/L) given K_{sp}
- \checkmark Calculate solubility with common ion given K_{sp}
- ✓ Identify pH-dependent solubility salts
- ✓ Calculate solubility of pH-dependent salt at a given pH