Chem 101B Exam 3 Concepts ## Chapter 14 – Acids and Bases - ✓ Identify whether an aqueous solution of a salt will be acidic, basic or neutral. - ✓ Calculate pH, pOH for a salt (Use $K_aK_b = K_w$ to calculate the conjugate ionization constant) - ✓ Identify Lewis acid or Lewis base. - ✓ Metallic oxides = basic, nonmetallic oxides = acidic ## Chapter 15 - Acid-Base Equilibria - ✓ Calculate [H⁺], [OH⁻], pH, pOH, %diss of a weak acid + conjugate base (buffer). - \checkmark Calculate Δ pH when either strong acid or strong base is added to buffer - ⇒ either by adding moles H⁺ or OH⁻ directly, or - ⇒ adding a solution containing H⁺ or OH⁻ - ✓ Know how a buffer works in that (HA or A⁻) reacts directly with (OH⁻ or H⁺) respectively - ✓ Buffer Capacity - ⇒ [HA]/[A⁻] ~ 1 - ⇒ [HA] & [A⁻] large - ✓ pH Titrations (SA/SB, WA/SB, or SA/WB) - ⇒ General shape of the curve pH vs volume titrant - ⇒ Estimate pH at equivalence point - - ⇒ pH before titrant added - ⇒ pH before equivalence point - ⇒ pH at equivalence point - ⇒ pH after equivalence point - ✓ Acid-Base Indicators choosing indicator to detect equivalence point ## Chapter 16 - Solubility Equilibria - \checkmark Calculate K_{sp} given solubility - ✓ Compare solubility of salts given K_{sp} - ✓ Calculate solubility (mol/L or g/L) given K_{sp} - \checkmark Calculate solubility with common ion given K_{sp} - ✓ Identify pH-dependent solubility salts - ✓ Calculate solubility of pH-dependent salt at a given pH