Chem 101A Exam 4 Concepts

Chapter 7 - Modern Atomic Theory

- ✓ Use formulas that relate energy of photon, frequency, wavelength, speed of light, and the Rydberg Equation
- ✓ Notable scientists and their contributions: Rutherford, Bohr, Planck, de Broglie, Heisenberg, Schrödinger.
- ✓ The four Quantum Numbers (n, l, m_l, m_s) , when they are allowed, how they describe the electron state, and how they relate to:
 - ⇒ Energy levels, orbitals (number allowed, shapes, sizes), electrons and spin
 - ⇒ Pauli Exclusion Principle
- ✓ Electron configurations of a given atom.
 - \Rightarrow 1s²2s²2p⁶...etc
 - ⇒ Short/abbreviated method, i.e. [noble gas]...the rest
 - ⇒ Orbital diagrams (and Hund's Rule)
 - ⇒ Exceptions to predicted electron configs (Cr, Mo, Cu, Ag, Au)
 - ⇒ Valence electrons vs Core electrons
 - ⇒ Periodic table and electron configs (e.g. alkaline earth metals last sublevel ns²)
- ✓ Periodic Trends: Ionization Energy, Atomic Radius, Electron Affinity, Electronegativity (Ch8)

Chapter 8 - Chemical Bonding

- ✓ Covalent vs Ionic bond energy model
- ✓ Ionic bond, coulomb's law and lattice energy (they all relate)
- ✓ Ionic radius trends (atom vs ion, and compare isoelectronic series)
- ✓ Bond energies to calculate ΔH_{rxn} ($\Delta E_{\text{bonds broken}} \Delta E_{\text{bonds formed}}$)
- ✓ Lewis structures predict which atoms bond to which and nonbonding electrons (lone pair)
 - ⇒ 2 valence electrons max: H, He
 - ⇒ 8 valence electrons max: 2nd row elements

 - ⇒ OK >8 valence electrons: 3rd row elements and below
 - ⇒ Use formal charges to evaluate best structures—double bonds to central atom
 - ⇒ When to draw resonance structures, and how many (resonance = average)
- ✓ VSEPR structures predict 3-dimensional arrangement of electron pairs in space
 - ⇒ Know and be able to predict 3D structure, sketch, including bond angles structures with these common geometries: any linear, tetrahedral, trigonal pyramid, bent, trigonal bipyramid, see-saw octahedral, and square planar.
 - ⇒ Predict molecular polarity (dipole moment). Recall, in symmetrical structures equal dipoles cancel out (non-polar or zero dipole moment), while in asymmetrical structures dipoles will sum (non-zero dipole moment).
- ✓ Born-Haber cycle and calculations